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THE SIMPLIFYING ASSULiPTIONS, REDUCING THE STRICT
.

&PPLICATIOi OF CLASSICAL HYDROEY:iAMICS TO

PRACTICAL AERONAUTICAL COMPUTATIONS,*

By Max M. Munk.

The application of classical hydrodynamic to the solution

of aeronautical probl.eas is baaed OQ ~implifying assumptions of

a fundamental nature, as the process involves setting aside the

viscoeity and coqmessioility of the air in the first place.

These two properties greatl,y cowpli~ate any analytic treat~ent of

aerodyna~ical questioils, and by neglecting thetiit Decoffieepo6siQ

ble to obtain valuable, though approximate results, whioh are of

great practical use.

The errors introduced by negle~ting viscosity and compre68i-

bility, and the corrections therefore necessary, as well as the

criteria for model tests free from such errors, have often been

,di8cussed and are not the subject of this paper. But the simpli-

fying assumptions which simply allow the zppltcation of hydrody-

namics are not enough. The mathe~atical tzeatinent required is
.

still too involved am difficult for use in practice. This paper

deals then with the simplifying assumptions necessary to maKe

classical hydrodynamics adapted for practical use.

* Paper read at International Congress fox Applied Mechanics,
Delft, Holland, April 22-28, 1924.
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A sim.ila~development took place in the theory of

The assumptions expres~ed by FlooketG Law and by others

a great extent the difficulties caused by the physical

2

e~a,s~icity.

removed to

aspect of

the problem. But even then, the mathematical treatment had to be

simplified too, and it wa~ not until. the theo~y of infinitely”

elongated beam~ and columns had been .worked out, that the theory

of elasticity became a valuable tool in the hands of practical

engineers.

The general meth@ followed to simplify the nuuerical

work in ‘hydrodynamics consists merely in neglecting quantities of

a low order of mgnitud-e. I proceed at once W &iecus8 how this

is done in the different problems of aeronautical hydrodynarnica.

The solutions having found a practical application up to now are:

1. Theory of the lateral air forces on airship hulls

2. Theory of wing =ections in a two-dimensional flow
●

3* Theory of wings with a finite ~pan

4. Propeller theory

1. The Theorv-of the Lateral Air Forces on Airship Hulls.

There are earlier attempts to investigate the flow around

airship hulls with circular cross-section moving parallel to

their axis, the method consisting of first choosing a certain dis–

tribution of fictitious sinks and sources and then determining

the shape of the hull and of the streamlines corresponding to t-hat.

distribution. By substituting doublets for the simple sources or
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~
SinKS, the lateral motion of airsnip hulis with cylindrical cross

sections can De i:~vtisti~atedin quite an analogous way. It is

dtfficuLt, however, to fini such a pair of ~iatributions of

source8 and sir.ks,ariiof dcublets which give rise to t’nesame

s“h%peof the hull. The ~ethod is rather laborious; furthermore,

it is not adapted for practical use.

Airship hulls have an elongation ratio of the length to the

maximum diameter up to 10, and nore, and it su~gestfi itself to

introduce the simplifying assumption cf an infinite elongation

ratio. This is not of so great use for the problem of longitud-

inal motion (parallel to the axis) , since, with diminishing diam-

eters, logaritdic term becoms douir.aat. The bydrodynmic flow

set up by the longitudinal motion is not of 60 g~e~t prWtiG~l

?.

v

importance, however. It is Known that the a,iaitional ~pparent

Lass of the hull in this case is s,MJ1 when couparea @ith its ac-

tual ma66. In many cases it can De neglected. The velocity of

flow at all point6 is smll when compared with tne velocity of

motion, and hence the pres8ure difference are small too. A

blunt noee is an exoeption to this rule, but then, ~ b~~t nose

is in contradiction to the assumed infinite elongation, which

should reduce all zones of the hull to an ~pproximately cylin-

drical shzpe. Near the blunt nose, therefore, large air velWi-

tiee %nd pre66ure differences do occur in a str~ight flight.

Along the larger poxtion of the hull,’however, the ‘~elocitY of

the air relative to the nuli can oe assuued to be equal to the

velocity of flight.
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u
The most important practical problem next to the drag exper-

ienced by the hull in straight flight i6 the computation of the

lateral forces acting on the hull when flying with an inclination

of the axis with respect to the direction of motion, or when fly-

ing along a curved path. The computation of these forces and of

the pressure distribution giving rise to them becomes greatly

simplified by the assurrption that the elongation be infinite.

Eac’h zone of the hull can then be considered as cylindrical, and

the component of the velocity distribution set up by the lateral

compo-nent of motion can be supposed to be the two–dimensional flow

around this cylinder, corres-pending to the lateral velocity oompo-

nent. This two-dimensional flow is generally known in practtcal-

cases, the cros6-section is often circular or at least approaching

a circle or ellipse and the flow produced by its motion can then

easily be computed. The potential of this two-dimensional flow

may be denoted by 0, and some provision nay be made so as to

make t-nepotential of all cross-sections equal over all points of

one surface at right angles to all streamlines. For circula~

cross-sections this could be t“heplane through the axis at right

angles to the lateral component of motion. Then

64
v =—

6X

gives the longitudinal velocity near the surface set up by the

lateral motion. In practice it is sr~allwhen compared with the

longitudinal velocity component of motion. This suggests the ad-

ditional simplifying assumption that the angle a between the axis
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and the direction of motion be always small. Then the pressure

variation, which according to Bernouillil s law contains the square

of the velocity to the hull (V + v)2 , becomes approximately lineaz

in v and proportional to 2 Vv, the tern with V2 giving rise

.
only to a constant pressure and

the second order of magnitude.

circular sections, where, as is

dimen6io-nal flow in question at

the term with V2 being small of

It follows, for the main case of

known, the potential of the two-

the points of the circle is pro-

portional to their distance fron a diameter, that the pressure

gradient parallel to the plane of ‘symmetry of the flow at the

points of the boundary of such a cro~s–section is co-nstant.

If all cross-sections are geometrically similar, their appar–

ent additional masses in the two-dimensional problen are propor-

tional to their areas; with circular cylinders in particular,

the apparent additional mas~ is equal to the mass of the displaced

fluid. Hence the apparent additional mass of a very elongated

hull with circular 6ections for lateral Motion is equal to the

mass of the displaced air; if the Bection is not circular, the

apparent additional mss is k times as large, where k denotes

the corresponding ratio for the section in a two-dimensional flow.

It follows that the entire couple of the lateral air forces is

equal to
2P

‘z sin 2 a X Tolume

(where P denotes the density of the air) . (Ref. 1.)

.



.

N.A.C.A. Technical Note No. 207 6
3

.
A formula equally as simple can be found for the distribution

of the lateral forces along the axis. Suppo6e the ship to fly

straight and horizontally with the axis pitched up under an angle

a with the horizontal. Consider a vertical layer of air at right

angles to the plane of symrc.etryof the ship. When the hull passes

through it, a two–dinensionalfiow is set up in that layer, corre–

spending to the lateral velocity component V cos a and to the

cross–section of the hull where the layer of air intersect= it.

The area of

mass of the

hull passes

momentum of

the cross–section, and hence the apparent ad&itional

tw%dimensional flow in the layer i6 varying ae the

along with the velocity V. Hence a change of the

the two-dimensional flow in the layer takes place con-

ti.nuou=ly, giving rise to the reaction

where
v

a

s

k

P

x

-z~
12 sin (2a) k &

denotes the velocity of flight ~

the angle of pitch

the area of cross-section

the coefficient of awparent additional mass of
cross–section

the den~ity of air

the coor~inate along the axis of the hull-

For circular cross–sections, k = 1.

The same assumptions and arawments lead to useful formulas

for the lateral forces on airship hulls flying in a curve. The
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details can be found in Ref. 2.

2; The Theory of ‘flingSections in & Two-Dimensional Flow.

The theory of the wing section is in a way the two-dimensional

analogy to the theory of airship hulls with circular cross-section.

A large amount of literature exists about the former problem, I

mention only Kutta, who originated this branch of aerodynamics, and

Joukowsky, who obtained most publicity in con-neotion with it.

The method followed by Kutta and his successors is based on

the conformal transformation of the wing section boundary into a

circle, a process requiring very laboxious mathematical work, and

which cannot be applied to most actual wing sections but must be

restricted to certain simple sections distinguished by no other
.

advantages.
.

In order to reduce the solution of this problem to computa-

tions to be made in the office of an airplane factory, it suggests

itself to consider the wing section as infinitely elongated in

analogy to the airship hull just treated. The assumptions are

then that (a) the maxinum thickness, and (b) the maximum camber,

is small when compared with the length of the chord. These two

assumptions are fairly well complied with by nearly all wing sec-

tiorisused in practice. In addition, it is convenient, though not
.

absolutely necessary, to assume the angle of attack between the

chord and the direction of motion to be small too. Then the veloc-

ity of the flow created by the motion of the wing is SU1l when
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compared with the velocity of motion, and can be neglected when

added to it. The simplification leading to a convenient develop-

ment of the main fornmla consists now in substituting a new bound-

ary in the problem. Instead of the boundary of the section, the

chord, that is a straight line in the immediate neighborhood of

all points of the section, i6 taken as the reference line for the

conditions of flow. For the computation of the lift, for instance,

the wing section can first be replaced by its middle line, having

as ordinates the arithmetical mean [, of the upper and lower or–

dinates of the wing section, the chord being the axis of abscissae

x. Then the velocity component of the flow at any point of the

chord and norual to it is approximately V d !/dx and thi6 re–

duces the original problem to one the solution of which i6 well

knowm. Any desired quantity referring to the flow can be ex-

pressed as a linear function of all mean ordinates of the section,

either

ter is

passes

by the

as an infinite series or as a definite integral. The lat-

more convenient for practice, particularly if the chord

through the rear edge of the section. The lift is given

condition that the air does not flow around the rear edge;

this leads to the formula

~ dx
L=V2P <:1 (length of chord = 2)

(1 - x) m

The pitching moment with respect to the middl.~ of the chord re–

Suits
+7 x ~dx

“=!J--
(Reference #3. }
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p~esmue tiistributiGn around the wing sec-

tion, the thickness of tilesection can no longer be disregarded

but gives rise to sixilar definite integrals giving terms of the
,

same order of magnitude as do the mean ordinateB. The pressure

on both sidefiis diminished ow’irigiG t-hethickness and hence a

section of finite thickaess is supported more by suction on its

upper side than ‘cypres.mre on the lower.

:=. Theory of Wings with Finite Span.

The practical difficulties of this problen lie in its being

a three-dimensional one. As is well known, ar. L. Prandtl at–

tacked it with the methods existing for the investigation of three-

dimensional flow=,* using F;ehoholtzvortex lines, a method which

i
was also tried by Lane-he8ter. In thi~ way, Dr. Pzandtl obtained

valuable results, though chiefly qualitative ores. Practical

computations can only he made by reuucin~ the probl’em to a two–

dimensional one by fleansof suitable assumptions. It i$ signif-

icant in this connection that Dr. Prandtl from.the very first vi~–

tually abandoned the three-dimensional t~eatment by assuming the

vortex lines to be parallel to the direction of flight rather

than to coincide wit}- the streamlines. The strict two-dimensional

treatment of the problem requires in addition that the components

of the flow set up by the wing parallel and lateral tG its motion

be neglectd. when added tG the velocity of flight. Then, the use
#

of the Helmholtz vortex lines can be avoided altogether and the
—

w
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usual methods fo~ investigating two-dimensional flows can be used

instcad. This is a proceeding rmmh uore desirable, for the method

of vortices and vortex lines seems not to appeal readily to minds

not thoroughly trained rcathematically, and give6 rise to confusion

among practical men rather than serving to enlighten them.

It ~hould be “mentioned in this connection that Dr. A. Betz “

investigated the air forces of a biplane cellule by combining in

a particular way the wing theory and the wing section theory.

Following Dr. Prandtl he assumed the actual vortex lines ‘Gobe

parallel; and furthermore, he replaced the wings by fictitious

concentrated vortex lines, obtaining thus a continuous system of

vortices. He obtained valuable qualitative results, but his method

is too laborious for practice and no exact.~antitative results*.

‘4 can be expected from it. His assumptions ar.ount

wings by cylindere of infinitely small dianeter,

seem justified to me as the distance between the

to replacing the

which does not

upper and lower

wing of a biplane cellule is not large when compared with the

wing chord. And even if it were much larger than it is, so that

neglecting the chord would be permissible, it would not yet be

evident tlnatthe first ter-m,that is, the circulation term char-

acteristic for the lift and vanishing inversely as the distance,
)

is dominant. It seems to me that at least the second term, chs&–

acteristic for the moment of the air force and vanishing inversely

as the square of the distance,
4

should be taken into account too,

aa it is of the same ordez of magnitude a~ the first one (Refer–
w
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ences 4 and 5).

Tne fundamental as~umption of the simplified wing theory is,

accordingly, that the air contained in a plane layer at right

angles to the di~ecti.on of flight remains inside the sane layer

and moves as a two–dimensional flow. Fa,rin front of the air-

plane, tirelayer is supposed to be at rest. While passing through

it, the wings gradually built up a two-dimensional flow in it.

After the wings have passed, the momentum of this flow is equal

and opposite to the lift transferred from the layer to the w%ng~.

The two-dimensional flow is further determined by the condition

that the impulsive pressure, necessary to create it and acting

along the boundaries of the front view of’the wings, is equal and

opposite in direction to the distribution of the lift transferred

to the wings. It can be de~onstrated in particular that the tw&-

dimensional flow has only obtained half its strength when the

This factor 1/2 finds its analogywings are pa~sing the layer.

in many other branches of theoretical mechanics.

The kinetic ener~y of the potential flow can be computed.

The work consumed in overcoming the drag of the wings (called the

induced drag) is equal to the kinetic ener=gytransferred to the

layers after the wings have passed them. The two-dimensional

flow, already half created in the neighborhood of the wings gives

rise also to a difference between the IIeffectivellangle of attack

(between chord and relative air flow) and the 11geometric ifangle ~

of attack (between chord and direction of motion), called the

“induced angle of attack.”
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As an additional assumption, the induced drag and induced

angle of attack are generally replaced by the mintmum value of

the~e two quantities coinpatible with the area of the surface,

span of one wing or plan view of several wings, the magnitude

the lift, the density of the air and the velocity

further additional

pect ratio
~:,g ,

rules referring to

ment caused by the

wings only. These

assumption which is often used

is large. There are, further,

of flight.

$s that the

very simple

the

of

A

as–

the diminution of the lift or the rolling mo-

induction, which primarily apply to elliptic

are wings, the chord of which plotted against

the span, gives a half ellipse. With them, and~suming the lift

to be proportional to the effective angle of attack, this factor

of dimimtio-n depends on the aspect ratio only. The same factor

can be used approximately for any wings having the same aspect

ratio.

The main formulas of the wing theory are:

Induced drag of a wing

Di =

Mean induced angle of attack

Factor of lift reduction

Factor of reduction of the rolling moment 1

1+$
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Induced yawihg moment MY due to the rolling moment MR

My = MR -~

where

Di = the induced drag

%. = the induced angle of attack

L = the lift

CL = the lift coefficient

S = the entire wing area

T = the moment of inertia
respect to the axis

b= span

T.

SV2:

of the wing area with

V = velocity of flight

p = density of air

k=a

k=l

factor dependent on the shape of the front
view of the wings (k2 b2 n is the area of

tapparent mass of the fron view of the wi~~6).

for monoplanes.

(Reference 3.)

4* Propeller Theory.

The assumptions which lead to a

efficiency of a propeller, or rather

practical formla for the

to the upper limit of the

efficiency, ~ere first made by Froude. The density of thrust

unit area of the propeller disk is assumed to be constant and

rotation of the slipstream is neglected. The efficiency then

per

the

has

v
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the maxirum value compatible with the thrust, the velpcity of mo-

tion, the diameter of the propeller, and the density of air, and

becomes

)

where
T = thrust

D = diameter

V = velocity

P = density

Other information about the properties of propellers is ob– ,

tained by combining the wing section theory and the slipstream

theory of Froude. The bl,ade elements are supposed to act like

the wing elements of an ordinary wing, moving along spiral paths.

This procedure is rather involved, too, and it seems judicious to

simplify it by considering

sumption is that variation

the bladefi a8 one unit. The main as–

of the shape of the slipstream, but

not of its velocity v, may be neglected. Then the slipstream

velocity, as follows from the consideration of the physical dimen–

sion of the quantities determining it, is neces~arily a linear

function of the velocity of flight and the tip velocity of the

blades U. The zatio U/V for zezo thrust can be obtained by ap-
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plying the wing section theory to the blades. It will often be

exact enough to consider a mean bla~e section only, say at 0.7 of

the propeller radius, and to find the value of U/V where its

lift becomes ze~oj the air being supposed to be at rest,

The

with the

mula for

of 0.7r

application of the wing section theory in conjunction

slipstream theory of Froude leads to an approximate for-

the con6tant differential quotient dv/dU . The choice

as mean radius of action gives

2.8 $
dv .

G 1+1.45 (~~
~ ./O

where (u/v}. is the value of U/V for

the formula

(Reference 7)

zero thrust and s the

entire blade area. By moans of this formula, and of the rela-

tions between the slipstream velocity and the thrust, the thrust

can be computed for any value of u/v .

5. Conclusion.

The simplification of hydrodynamical computations diBcussed

in this papez are of more than practical value for the computa-

tion. They are also of great instructive value, as they point out

the main cauees of the different actions of the air. These are

always the same as in rigid mechanics, each force is the reaction

to an acceleration of masses. The kinetic energy contained in an

air flow, and the ‘momentum giving rise to it are its main charac-

teristics, and play the same part as do the kinetic energy and the



N.A.C..I.Technical Note No. 207 16

momentum of rigid bodie6 in the mechanics of rigid bodies. These

conceptions appeal to the e-ngineerand give rise to creative

thought6. They should therefore be put in the very front in aero-

d~amical papers in-tended for education, instead of abstract irath–

ema.ticalconceptions like vortices, which are chiefly of uBe for

special scientific re6earch.
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